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Problem:  how to use Bohm-inspired ideas?

• We’ve heard plenty about attempts to use Bohm trajectories for doing 
quantum dynamical calculations.

• Mostly model, 1D (or few D) problems that can be approached more 
efficiently using “standard” methods

• PROBLEM: Quantum potential becomes singular. 

• WANTED:  a problem that is difficult to solve using “traditional” methods and 
one in which “Bohm-inspired” methods offer a solution in an efficient way. 

• WANTED: flexibility to use the approach for a wide range of problems.

• Karl Freed (U. Chicago) “Too much rigor makes for rigor mortis.” 

Q(x) ∝ 1
ψ(x)

ψ′′(x)

Bohm HB22 Vacuum Motor.
 (Flame Gulper.)



#1: Let’s forget about real-time dynamics

• For stationary states.  Do not have to worry about the “node problem”
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no singularities
no “node problem” for all 
stationary states!!



Bohm/Monte Carlo idea.

• Basic Idea (Jeremy Maddox’s PhD Thesis).

• Sample the quantum density using Monte Carlo.

• Use “maximal entropy” method to get n(x)

• Use n(x) to obtain quantum potential.

• Move sample points along conjugate gradient of E[n] = Q[n]+ V[n] so that 
∂E = 0

• At true ground state: sample points are stationary!

• Thermal effects can be included by performing calculations in a statistical 
ensemble (Mermin). 

Q[n] =
−!2

2m

1√
n
∇2√n



Mixture model n(r) =
M∑

m

p(r, {cm})

p(r,{cm}) = prob. that a randomly chosen member of 
ensemble will have configuration r and is a variant of the 
mth approximate designated by {cm} (Joint probability)

p(r,{cm}) = p({cm}) p(r | {cm}) = n(r)p({cm} | r) 

p(r | {cm}) = prob. that a randomly chosen variant of {cm} has config. r 

p({cm}| r ) = prob. that r is a variant of {cm}

p(cm|rn) =
p({cm})p(r|{cm})∑
m p({cm})p(rn|{cm})

Bayes’ Equation: Note: Can choose approximates 
p(r|{cm})  in a variety of ways.  
Easiest = gaussian with sparse 
covariance. (e.g. factored between 
different d.o.f.
More exact: choose covariance perhaps 
correlating multiple atoms, d.o.f, etc.



Estimating density using n-Gaussian approximates
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FIG. 2: This figure illustrates the EM algorithm for the data pictured in Fig. 1 using 16 separable

Gaussian clusters. The contours reflect the approximated probability density during the course of

the EM fitting routine. The black dots correspond to the average position of the Gaussian cluster,

and the solid black ellipses represents the Gaussian half-width contours.
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• Estimating Bohm's quantum force using Bayesian statistics, 
Jeremy Maddox and Eric R. Bittner,J. Chem. Phys. 119, 6465 (2003).

http://link.aip.org/link/?JCP/119/6465/1
http://link.aip.org/link/?JCP/119/6465/1


Relaxation on a model Potential Surface (MeI)

FIG. 7: Plots (a) and (b) show the relaxation of a Gaussian wave packet in an anharmonic potential

well for both the separable and fully covariant models, respectively. The gray contours reflect

the potential energy curves for a model of CH3I. The shaded contours indicate the shape of

the approximated density after (1) 0, (2) 10 000, and (3) 40 000 Verlet time steps, respectively.

The solid curves represent the half-width contours of the Gaussian clusters. Plot (c) shows the

numerically accurate DVR ground state and the associated grid of quadrature points. Plot (d)

shows the energy of the estimated density as a function of time steps. The dotted and solid data

corresponds to the separable and nonseparable models, respectively, while the dashed horizontal

line represents the DVR energy.
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• Estimating Bohm's quantum force using Bayesian statistics, 
Jeremy Maddox and Eric R. Bittner,J. Chem. Phys. 119, 6465 (2003).

http://link.aip.org/link/?JCP/119/6465/1
http://link.aip.org/link/?JCP/119/6465/1


#2: Ask: When are QM effects important?

• DeBoer Ratio:  ratio of de Broglie wavelength to range of potential 

Λ =
λ(T ∗)

σ
=

!
σ
√

mε

T ∗ = ε/! effective T in terms of well-depth

Classical limit Λ =0

Λ > 0.3

ΛNe > 0.1

“Strongly QM”

Liquid Ne:

(Liq. He)

Physical Question: Are there appreciable quantum 
contributions to structure/thermodynamics of clusters?



System: Quantum rare-gas clusters

V(12)

1

2

3

V(13)

V(23)

Sample point assigned to atom #1

E[n(r1, ..., rN )] = T [n] + V [n]

n(r1, ..., rN )

configurational
density

Energy density functional:



T = 0K theory

H = −
N∑

i=1

!2

2mi
∇2

i +
∑

i !=j

V (ij),

n(r1, ..., rN )
Energy is a functional of the 
configurational density

E[n(r1, ..., rN )] = T [n] + V [n]

δE[n]
δn

= 0Ground state: 

Ψ(r) =
√

n(r)eiφ

φ(r) = const.



Density factorization (mean field approx)

Configurational Density n(12345)
q.m. prob. for finding system in a given 
atomic configuration 

n(r1, ..., rN ) ≈
∑

m

p(r1, ..., rN , cm)

Approx: full config. density as a sum over 
“statistical approximates” 

Hartree-factorization: 

n(r1, r2, · · · , rN ) =
N∑

m

p(rm, cm)

variational
parameters



Variational equation

δ






N∑

i=1



TW [ni(ri)] +
∑

j !=i

∫ ∫
ni(ri)nj(rj)V (ij)dridrj − µ

(∫
ni(ri)dri − 1

)






 = 0

Kinetic energy functional = integral over quantum potential

variation of total energy:  “orbital free” version of DFT

constraintinteractionskinetic energy

T [n] =
∫

n(r)Q[n(r)]dr
Weissacker functional

V [n] =
∑

i>j

∫ ∫
ni(ri)nj(rj)V (ij)dridrj

T [n] = − !2

2m

∑

i

∫ √
ni∇2

i

√
nidri =

∑

i

TW [ni]

interactions

can include exchange/correlation for boson or fermion systems using approx. XC functionals



Euler Lagrange EOM

δTW [ni(ri)]
δni(ri)

+
∑

j !=i

∫
V (ij)nj(rj)drj − µ = 0.

V e
i = Q(ri) + Ve(ri) +

N∑

j=1

Vp(ri, rj).

Effective (statistical) potential for atom i

Sample each atomic density using points, move each sample 
point along gradient of total quantum energy

∇iE = −
∑

j !=i

∫
(∇iV (ij))nj(rj)drj −∇iQ[ni(rj)]



Nen and Arn (n=4,13,19)

location. Each density “lobe” is nearly spherical with some

elongation. These density plots give a suggestive view of the

overlap of the densities, which is ignored in eqs 3 and 9. For

the systems at hand, this overlap turns out to be minor, but for

atoms such as Helium, this would have to be taken into account.

It has been noted in the literature22 that lowering the mass,

which results in increasing the quantum effects, will result in

delocalization through the increase in the zero-point kinetic

energy of the system. Under NPT conditions, this would result

in two competing effects, the tendency to minimize the potential

energy, and the tendency of the atoms to spread to minimize

the quantum kinetic energy by increasing the volume. One

expects a net volume increase as the nuclear ground-state wave

function spreads out to minimize the quantum kinetic energy.

This also leads to a net decrease in the binding potential energy

because the atoms are effectively further apart. Also, there may

be tunneling between mainly iso-energetic configurations

separated by low-energy barriers. In summary, when quantum

effects are present, the decrease in the binding potential energy

and the quantum fluctuations lead to what is known as a

softening of the crystal and a reduction of its melting temper-

ature.

A similar interplay can be seen in the present method. In

Figure 1, each atomic density has a finite width. This can be

contrasted with the classical case that has δ functions represent-
ing the atoms. This spread is maintained by the kinetic energy

term in the Hamiltonian through the quantum potential. In this

sense, the quantum potential term is a measure of the quantum

character of the system and provides an intuitive way to

understand softening of crystals.

In Figure 2, we show the total energy and the total potential

energy for the Ar5 and Ne5 clusters as the system converges

toward its lowest-energy state. Initially, there is a rapid

restructuring of the densities as they adjust to find a close

approximation to the actual ground-state density. Following this

initial rapid convergence, there is slower convergence phase as

the density is further refined. During this process, as the sample

points look for a configuration that fully equalizes the quantum

and kinetic energy terms from eq 6, the density approximation

can sometimes prove inadequate and points can be pushed into

temporary higher-energy regions. This leads to the fluctuations

seen in the energies and any other averaged quantity such as

the interatomic distances. To compute meaningful values for

the energy and distances, we averaged these quantities over the

last half million or so cycles. As can be seen from Figure 2,

the Ne5 cluster is slower to converge, but eventually does so

after roughly 200 million iterations.

Tables 1 and 2 list the averaged interatom distances for each

cluster compared to the equilibrium distances for the corre-

sponding classical case. For the case of Ar5, the numerical

fluctuations lead to an uncertainly of about 0.3% in the

interatomic distances and for Ne5, a 0.5% uncertainty in the

interatomic distances. These fluctuations are simply the root-

mean-square of the values calculated. It is important to note

that the fluctuations mentioned here tend to decrease with

increasing system size, as can seen by comparing the results

for Ar5 with Ar4. This has important implications because we

hope to extend this method to larger systems. Ne4 can be seen

to have the largest fluctuations. This is expected because it is

Figure 1. The isodensity contour plots of the clusters at a value of
0.006. In the upper left is the Ar4 cluster, in the upper right is the Ne4,
lower left has the Ar5, and then bottom right is Ne5. The axes are listed
in atomic units.

Figure 2. The average potential energy !V" and total energy !Q" + !V" of the Ar5 and Ne5 clusters in kJ/mol. The steps are measured in millions.

TABLE 1: Interatomic Distances for X5 Clusters in
Angstroms

distances argon argon (cl) neon neon (cl)

rd1,2 3.884 ( 0.010 3.822 3.262 ( 0.023 3.135
rd1,3 3.875 ( 0.009 3.822 3.234 ( 0.016 3.135
rd1,4 3.855 ( 0.009 3.808 3.204 ( 0.018 3.124
rd1,5 3.845 ( 0.008 3.808 3.199 ( 0.014 3.124
rd2,3 3.882 ( 0.012 3.822 3.259 ( 0.029 3.135
rd2,4 3.849 ( 0.009 3.808 3.205 ( 0.020 3.124
rd2,5 3.853 ( 0.008 3.808 3.211 ( 0.018 3.124
rd3,4 3.843 ( 0.009 3.808 3.233 ( 0.031 3.124
rd3,5 3.846 ( 0.008 3.808 3.214 ( 0.018 3.124
rd4,5 6.259 ( 0.010 6.208 5.209 ( 0.020 5.092

TABLE 2: Interatomic Distances for X4 Clusters in
Angstroms

distances argon argon (cl) neon neon (cl)

rd1,2 3.894 ( 0.012 3.814 3.262 ( 0.022 3.13
rd1,3 3.859 ( 0.008 3.814 3.229 ( 0.026 3.13
rd1,4 3.858 ( 0.010 3.814 3.222 ( 0.025 3.13
rd2,3 3.872 ( 0.011 3.814 3.248 ( 0.020 3.13
rd2,4 3.864 ( 0.008 3.814 3.214 ( 0.014 3.13
rd3, 4 3.854 ( 0.008 3.814 3.223 ( 0.021 3.13
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the most quantum mechanical. All in all, these values compare
well with the classical distances. In general, the quantum
distances are slightly larger due to the fact that the Gaussian
atom densities are sampling part of the anharmonic repulsive
portion of the pair potential.
Table 3 summarizes the various contributions to the total

energy for each cluster. The “classical” energies, Vc, are the
energy minimum of the total potential energy surface corre-
sponding to the classical equilibrium configuration, and they
are obtained from the same code we used for the other quantum
simulations but with p turned to zero. This corresponds to a
classical molecular dynamics simulation, the implications of
which are discussed later. !V", !Q", and !E" are the total quantum
potential energy, kinetic energy, and total energy of each cluster,
respectively. The difference between the classical potential
minimum, Vc, and !E" is the zero-point energy, labeled E0 in
the table. One can see that the zero-point energies for the Ne4
and Ne5 systems account for 43.66 and 39.68%, respectively,
of the total energy. We also calculate a virial-like term, which
is the ratio of the kinetic to the potential energy of the system,
!Q"/!V̂", where !V̂" ) !V" - !V0". !V0" is the limit of the potential
energy at infinite separation. The kinetic term here is the
quantum potential because the translational energy has been
siphoned away. For larger systems, this ratio is expected to fall
because the zero-point energy should become less important,
and that is what is observed in the results.
In addition to the results for the small 4- and 5-atom clusters

we have presented above, we also considered much larger 13-
and 19-atom clusters of neon. These larger calculations are
particularly challenging because the total number of degrees of
freedom are considerably way beyond that which can be handled
by standard grid-based techniques. These clusters correspond
to the smallest “magic” number clusters that exist for Lennard-
Jones systems and are particularly interesting because they have
both interior (caged) and exterior (cage) atoms. The lowest-
energy 13-atom cluster takes an icosahedral geometry with the
12 exterior atoms lying at the vertexes and the central caged
atoms at the origin. Similarly, the 19-atom cluster is more of a
prolate icosahedron with one extra band of 5 atoms and two
interior atoms. Figure 4 shows the equilibrium positions of the
atoms for both clusters. In performing the quantum calculations
for these larger clusters, we used 200 sample points versus 300
used for the smaller clusters and used the equilibrium positions
as staring points. In all other respects, the calculations proceeded
as above.

The convergence with respect to total energy for the two
larger neon clusters can be seen in Figure 3 with the final
converged values given in Table 4. The large shoulder in the
convergence of the 13-atom cluster was due to a small
rearrangement of the atoms as the system relaxed. The virial
term remains about the same as in the case of the smaller
clusters. Furthermore, the zero-point energy for the clusters is
40.1% of the classical energy for the 19-atom cluster and 44.1%
for the 13-atom cluster respectively. Also note that theVc values
for these larger clusters were obtained from the literature.50-52

Figure 4 also shows a snapshot of sample points for each
cluster (2600 and 3800 points, respectively) in their lowest-
energy quantum states. Recall that the classical sample points
represent entire atoms, but the quantum sample points make
up the quantum density “cloud” of each nuclei. In both cases,
the quantum density of the interior atoms is more tightly
compressed than the quantum density of the atoms on the surface
of the cluster. Furthermore, notice that the mean position of
the quantum atoms is farther away from the center of the cluster
than in the classical case. Averaging over the exterior atoms,
the quantum 13-atom cluster has a radius of 3.113 Å versus
3.017 Å for the classical case. This 3% increase in the radius
results in nearly 20% increase in the volume of the cluster. A
similar effect can be noted for the 19-atom cluster.

Figure 3. Convergence of the 13- and 19-atom clusters of neon. The energy is in kJ/mol and the steps are given in millions.

TABLE 3: Converged Ground-State Energies for 4- and 5-Atom Clusters in kJ/mol

Ar4 Ne4 Ar5 Ne5

Vc -5.986 -1.827 -9.083 -2.772
!V" -5.668 ( 0.112 -1.592 ( 0.028 -8.630 ( 0.114 -2.447 ( 0.117
!Q" 0.462 ( 0.032 0.460 ( 0.034 0.689 ( 0.041 0.646 ( 0.036
!E" -5.205 ( 0.099 -1.132 ( 0.013 -7.940 ( 0.098 -1.801 ( 0.0005
E0 0.781 0.695 1.143 0.971
!Q"/!V̂" 0.082 0.288 0.079 0.263

TABLE 4: Converged Quantum Ground-State Energies of
the Larger 13- and 19-Atom Clusters in kJ/mol

Ne13 Ne19

Vc -13.559 -22.226
!V" -10.928 ( 0.153 -18.472 ( 0.193
!Q" 2.188 ( 0.081 3.651 ( 0.034
!E" -8.740 ( 0.099 -14.821 ( 0.133
E0 4.819 7.405
!Q"/!V̂" 0.200 0.197

Figure 4. Thirteen and 19-atom clusters with the quantum sample
points in yellow overlaid on the classical equilibrium positions in black.
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represent entire atoms, but the quantum sample points make
up the quantum density “cloud” of each nuclei. In both cases,
the quantum density of the interior atoms is more tightly
compressed than the quantum density of the atoms on the surface
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the quantum atoms is farther away from the center of the cluster
than in the classical case. Averaging over the exterior atoms,
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Vquantum  > Vclassical

• for 13 atom cluster: mean radius of quantum cluster 
about 3% > than classical

• 20% increase in volume.

• “spread of atoms due to uncertainty principle.

• internal quantum “pressure” of interior-most atom causes 
entire cluster to slightly swell for smaller closed 
(complete) shell clusters



Finite temperature theory

grand ensemble Z(T, V, µ) = Tr(e−β(H−µN))

Ω = − 1
β

log(Tr[e−β(H−µN)])

Mermin: finite temperature DFT
Ω[ρ̂T ] = Tr[ρ̂T (K + V − µN +

1
β

log ρ̂T )]

δΩ =0

Ω[ρ̂T ] ≥ Ω[ρ̂]for any trial density: 



Entropy functional

S = kB log Ωmc

S = −kBTr[ρ̂ log ρ̂]

µ =
1
β

δS

δn
+ Q(r) + Vmf (r)

S[n(r)] =
1
β

∑

i

∫
ni(ri) log(ni(ri))dri =

∑

i

S[ni]

Ω[n(r)] = F [n(r)]− µ

∫
n(r)dr

F [n(r)] = Tw[n(r)] + V [n(r)] +
1
β

S[n(r)]

Micro-canonical entropy:

δS

δni
=

1
β

(log(ni(ri)) + 1)Entropic 
“force”



Ground state energy vs. size.
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FIG. 2: Various energetic contributions for quantum and clas-
sical Neon clusters versus cluster size, N . Key: 〈cl〉= classical
global potential minimum energy, 〈cl+qc〉 =zero-point energy
corrections from Ref. [6], 〈E〉=total energy, 〈Q〉= quantum
kinetic energy (from quantum potential).

with the following: An initial Monte Carlo search over the
potential energy hypersurface is performed to determine
a test configuration. The zero point energy of this test
configuration is determined using the static atomic posi-
tions. The calculated zero point energy is then added to
the classical potential energy and this sum is used for the
Metropolis acceptance criteria. This process is repeated
until the lowest energy configuration is determined, now
including both the pair-potential and the zero-point en-
ergy.

In our study as well as that from Reference [6] the
starting configurations were based upon the global clas-
sical minimum on the potential energy hypersurface of
the cluster. In Calvo et al.’s semi-classical results, quan-
tum effects produced different global minimum for 35 out
99 cases for Nen in the range of n ≤ 100. For example,
the 17 atom cluster has three nearly equivalent minima
(17A, 17B, and 17C) with energies EC < EB < EA sep-
arated by substantial potential barriers; likewise, n = 27
and n = 28 each have two energetically similar minima.
The energies (from Ref. [6] ) of these are given in Ta-
ble I. Remarkably, our results show a different ordering
of the energies of these structures compared to the semi-
classical results. The difference between the two results
is consistent with the general trend shown in Fig. 2 and
corresponds to the different levels of theory used in each
study. In the semi-classical approach, zero-point contri-
butions are estimated from the curvature of the potential,
after energy “relaxation” on the potential energy hyper-
surface. However, in our approach the quantum delocal-
ization self-consistently alters the 3N -dimensional total
energy hypersurface being sampled.

TABLE I: Ground state vibrational energies for Nen clusters
for our results compared to the results tabulated by Calvo et
al. Ref. [6]

Cluster order Energy (From Ref. [6] ) order This work.

17C (1) -11.0853 (2) -16.6336

17B (2) -11.0814 (3) -16.3188

17A (3) -11.0633 (1) -16.6699

27B (1) -21.5483 (2) -27.6994

27A (2) -21.5099 (1) -28.2823

28B (1) -22.5892 (2) -28.7459

28A (2) -22.5496 (1) -29.3524

Finite Temperature Results

The thermodynamics of small mesoscale systems is of
considerable interest since what are typically extensive
variables (e.g. total energy, entropy, etc.) that scale
monotonically with system size can exhibit anomalous
behavior as the system size becomes small. Add to this
the influences of quantum delocalization, and one antic-
ipates the predicted thermodynamics of these system to
exhibit behavior quite different from the bulk or even
from a purely classical prediction.

One attractive way to introduce quantum corrections
in to an otherwise classical molecular dynamics or Monte
Carlo simulation is through the use of an effective “quan-
tum potential”. Typically such effective potentials are
expansions of the quantum partition function in powers
of h̄. The Feynman-Hibbs potential is derived by char-
acterizing a quantum particle with a Gaussian that has
a width equal to the thermal de Broglie length centered
about the particle and accounts for the spread in density
expected for quantum particles. Under these assump-
tions the partition function can be simplified, and with a
Gaussian density the pair potential term would be eval-
uated with,

V (rij) =
(

2µ

πβh̄2

)3/2 ∫
dRV (|r + R|)e−

2µ

βh̄2 R2

, (35)

with some reduced mass, µ. The effective potential can
then be found by expanding about r and truncating at
some convenient order. Calvo et al. (CITATION) per-
formed their calculations using,

Veff (r) = V (r) +
h̄2β

24m
V ′′(r). (36)

Such an approach was used by Calvo et al. in Ref. [6]
in their very comprehensive survey of how quantum de-
localization affects the structure and energetics of rare
gas clusters and as such provides a highly useful point
of comparison for our approach. We do note that these
expansions assume λ to be small (compared to the lo-
cal variation in the potential), as per the semi-classical

avg quantum potential (i.e. kinetic energy)

classical + qm correction (Wales)

fully QM

classical LJ energy

Veff = V (r) +
!2β

24m
V ′′(r)
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FIG. 2: Various energetic contributions for quantum and clas-
sical Neon clusters versus cluster size, N . Key: 〈cl〉= classical
global potential minimum energy, 〈cl+qc〉 =zero-point energy
corrections from Ref. [6], 〈E〉=total energy, 〈Q〉= quantum
kinetic energy (from quantum potential).

with the following: An initial Monte Carlo search over the
potential energy hypersurface is performed to determine
a test configuration. The zero point energy of this test
configuration is determined using the static atomic posi-
tions. The calculated zero point energy is then added to
the classical potential energy and this sum is used for the
Metropolis acceptance criteria. This process is repeated
until the lowest energy configuration is determined, now
including both the pair-potential and the zero-point en-
ergy.

In our study as well as that from Reference [6] the
starting configurations were based upon the global clas-
sical minimum on the potential energy hypersurface of
the cluster. In Calvo et al.’s semi-classical results, quan-
tum effects produced different global minimum for 35 out
99 cases for Nen in the range of n ≤ 100. For example,
the 17 atom cluster has three nearly equivalent minima
(17A, 17B, and 17C) with energies EC < EB < EA sep-
arated by substantial potential barriers; likewise, n = 27
and n = 28 each have two energetically similar minima.
The energies (from Ref. [6] ) of these are given in Ta-
ble I. Remarkably, our results show a different ordering
of the energies of these structures compared to the semi-
classical results. The difference between the two results
is consistent with the general trend shown in Fig. 2 and
corresponds to the different levels of theory used in each
study. In the semi-classical approach, zero-point contri-
butions are estimated from the curvature of the potential,
after energy “relaxation” on the potential energy hyper-
surface. However, in our approach the quantum delocal-
ization self-consistently alters the 3N -dimensional total
energy hypersurface being sampled.

TABLE I: Ground state vibrational energies for Nen clusters
for our results compared to the results tabulated by Calvo et
al. Ref. [6]

Cluster order Energy (From Ref. [6] ) order This work.

17C (1) -11.0853 (2) -16.6336

17B (2) -11.0814 (3) -16.3188

17A (3) -11.0633 (1) -16.6699

27B (1) -21.5483 (2) -27.6994

27A (2) -21.5099 (1) -28.2823

28B (1) -22.5892 (2) -28.7459

28A (2) -22.5496 (1) -29.3524

Finite Temperature Results

The thermodynamics of small mesoscale systems is of
considerable interest since what are typically extensive
variables (e.g. total energy, entropy, etc.) that scale
monotonically with system size can exhibit anomalous
behavior as the system size becomes small. Add to this
the influences of quantum delocalization, and one antic-
ipates the predicted thermodynamics of these system to
exhibit behavior quite different from the bulk or even
from a purely classical prediction.

One attractive way to introduce quantum corrections
in to an otherwise classical molecular dynamics or Monte
Carlo simulation is through the use of an effective “quan-
tum potential”. Typically such effective potentials are
expansions of the quantum partition function in powers
of h̄. The Feynman-Hibbs potential is derived by char-
acterizing a quantum particle with a Gaussian that has
a width equal to the thermal de Broglie length centered
about the particle and accounts for the spread in density
expected for quantum particles. Under these assump-
tions the partition function can be simplified, and with a
Gaussian density the pair potential term would be eval-
uated with,

V (rij) =
(

2µ

πβh̄2

)3/2 ∫
dRV (|r + R|)e−

2µ

βh̄2 R2

, (35)

with some reduced mass, µ. The effective potential can
then be found by expanding about r and truncating at
some convenient order. Calvo et al. (CITATION) per-
formed their calculations using,

Veff (r) = V (r) +
h̄2β

24m
V ′′(r). (36)

Such an approach was used by Calvo et al. in Ref. [6]
in their very comprehensive survey of how quantum de-
localization affects the structure and energetics of rare
gas clusters and as such provides a highly useful point
of comparison for our approach. We do note that these
expansions assume λ to be small (compared to the lo-
cal variation in the potential), as per the semi-classical
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WKB criteria. Consequently, for lower temperatures and
higher degrees of quantum delocalization such effective
quantum corrections are not applicable.

Here we focus on three clusters, Ne13, Ne17, and Ne37

over a temperature range spanning the solid to liquid
transition for bulk Ne. In the figures which display the
thermodynamic data the temperature is given in reduced
units which is the temperature in Kelvin multiplied by
Boltzmann’s constant and divided by the well depth of
the Lennard-Jones potential, T ′ = TkB/ε. Fig. 3 shows
the total free energy (scaled to a common T = 0K origin)
versus temperature for the three clusters. Fig. 4 shows
the various contributions to the total free energy for the
13 atom cluster with similar behavior for the other clus-
ters. First, the contribution from the quantum potential
increases, as it should as T increases. The averaged quan-
tum potential is simply the average quantum kinetic en-
ergy and as such is approximately inversely proportional
to the de Broglie wavelength squared, 〈Q〉 ∝ λ−2. Hence,
〈Q〉 increases as the system becomes more localized, cor-
responding to an increasingly shorter thermal de Broglie
wavelength as T increases.

At higher temperatures, though, the quantum effects
will be washed out as the de Broglie wavelength goes to
zero. So, we expect that these factors will only be appar-
ent at lower temperatures. The de Broglie wavelength is
decreasing because the entropic potential causes an in-
crease in the effective well depth that the atom feels with
increasing T . As this happens, the cohesive forces in-
creases in response to the decreased delocalization. This
is a counterintuitive result since the cohesive forces are
expected to decrease at higher temperatures. This re-
sults from the ability of atomic clusters to preferentially
store energy in the internal interaction energy rather than
kinetic. This aspect of mesoscopic clusters is discussed
later.

It is useful to compare the results we have obtained
with the analytical results obtained using the Debye
model which is known to have the correct low tempera-
ture behavior for the heat capacity in the bulk material.
The Debye model has a single adjustable parameter, the
Debye temperature, defined by

TD =
hcs

2kB

(
6N

πV

)−3

. (37)

where N/V = ρ is the bulk density and cs is the speed
of sound in the medium. From this we can derive the
internal energy as

U = 9NkBT (T/TD)3
∫ TD/T

0

x3

ex − 1
dx. (38)

In general, TD is determined by fitting the model to ex-
perimental thermodynamic data. For bulk Ne, TD =
75K.
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FIG. 3: The free energy of the different clusters vs. temper-
ature. Error bars indicate numerical/statistical precision of
each computed free energy value. Note the T = 0 values are
offset to a common origin for comparison. The energies at
T = 0K for the three clusters are as follows: F 13

0 = −11.21
kJ/mol, F 17

0 = −15.216 kJ/mol, and F 37
0 = −39.03kJ/mol.

Fig. 5 compares the internal energy from our results to
the Debye model with the Debye energy shifted so that
it corresponds at T = 0K with our results. By compar-
ing the curves it is evident our results for the 17 and
37 atom systems will give similar Debye temperatures to
the bulk limit. The melting region can be identified as
the nonlinear regions of the internal energy curves. In all
three clusters, similar melting regions are observed for
both approaches. It may seem remarkable that the De-
bye model is still useful given the fact that these clusters
are far from the bulk limit. However, the Debye model
was constructed to account for both the high and low
temperature caloric curves in condensed phase systems,
and there is no fundamental problem with it as an ap-
proximation in this case.

Closer inspection of the internal energy curve for Ne13

indicates that tor temperatures, 0 < T ≤ 0.2T ′, the in-
ternal energy decreases to some extent. This corresponds
to a negative heat capacity. Even given a computational
error estimate of± 0.1 kJ/mole in the internal energy, the
dip is clearly present in our results. This is not entirely
unreasonable or unprecedented as several recent studies
have predicted negative heat capacities for atomic clus-
ters [4, 5, 6]. However, in Ref. [6] it was dismissed as
an unphysical result. In addition negative heat capaci-
ties have also been observed recently for sodium clusters
of 147 atoms[30] and they have been predicted in as-
trophysics, where energy can be added to a star whose
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FIG. 4: Plots of the quantum, total potential, and entropic
contributions to the total free energy vs. temperature for
Ne13.

temperature subsequently cools down[31]. Schmidt et al.
[30] explain this for small atomic systems as a purely
microscopic phenomenon. That is, for larger systems at
a phase transition, energy is added as potential energy
rather than kinetic energy so that the temperature re-
mains constant over the course of the transition. For
mesoscopic scale atomic systems, on the other hand, it
can be entropically favorable to avoid a partially melted
state so that some energy is actually transfered from ki-
netic to potential energy causing a negative heat capacity
near phase transitions. Since this is not observed in clas-
sical simulations nor in the Debye model, it is possibly
due to anharmonic quantum delocalization effects in the
system. Another factor is that N = 13 and 147 clus-
ters form complete icosohedral structures in their lowest
energy state. These are called magic number clusters be-
cause of the stability of these highly symmetric forms.
Since negative heat capacities have only been observed

FIG. 5: Internal energy comparison of the current results (· ·
! · ·) with the Debye model (−).

and/or predicted for magic number clusters, this sug-
gests that the negative heat capacity may be related to
the symmetry of the system.

In all instances of negative heat capacity the common
factor is that the energy is not an extensive quantity and
the interactions between subsystems must be taken into
account. In the clusters we are examining the tempera-
ture is raised but the atoms adjust themselves to store
energy in the pair-potential interaction between atoms
rather than increase the kinetic energy. Although this
explanation offered by Schmidt et. al.[30] appears to in-
dicate that this is a purely classical effect. To our knowl-
edge, no classical molecular dynamic methods have pre-
dicted negative heat capacities. Hence, we attribute the
negative heat capacity to purely quantum mechanical ef-
fects in this system.

Based upon the above discussions we can say the ther-
modynamics of these clusters is influenced greatly by
their relative ability to store energy preferentially in the
potential energy. This aspect of these systems can be
studied by introducing a virial like parameter consisting
of the ratio of the quantum potential with the total in-
ternal energy, 〈Q〉/〈U〉. This parameter essentially mea-
sures the percentage of energy contained in the kinetic
energy. This will be given by,

τm = − 〈Q〉
〈Q〉 + 〈V 〉 .

τm should approach 1 as the temperature is raised since
the averaged quantum potential value is increasing with
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rather than increase the kinetic energy. Although this
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and/or predicted for magic number clusters, this sug-
gests that the negative heat capacity may be related to
the symmetry of the system.

In all instances of negative heat capacity the common
factor is that the energy is not an extensive quantity and
the interactions between subsystems must be taken into
account. In the clusters we are examining the tempera-
ture is raised but the atoms adjust themselves to store
energy in the pair-potential interaction between atoms
rather than increase the kinetic energy. Although this
explanation offered by Schmidt et. al.[30] appears to in-
dicate that this is a purely classical effect. To our knowl-
edge, no classical molecular dynamic methods have pre-
dicted negative heat capacities. Hence, we attribute the
negative heat capacity to purely quantum mechanical ef-
fects in this system.

Based upon the above discussions we can say the ther-
modynamics of these clusters is influenced greatly by
their relative ability to store energy preferentially in the
potential energy. This aspect of these systems can be
studied by introducing a virial like parameter consisting
of the ratio of the quantum potential with the total in-
ternal energy, 〈Q〉/〈U〉. This parameter essentially mea-
sures the percentage of energy contained in the kinetic
energy. This will be given by,

τm = − 〈Q〉
〈Q〉 + 〈V 〉 .

τm should approach 1 as the temperature is raised since
the averaged quantum potential value is increasing with
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FIG. 6: (〈Q〉/〈U〉) vs. T. (Key: —: 13 atoms, · · ·:17 atoms,
− ·− : 37 atoms) .

temperature and the averaged potential interaction en-
ergy should remain about constant, although the cluster
will dissociate into a disordered state long before this
point is reached. The averaged quantum potential value
is a monotonically increasing function of the temperature
because it is inversely proportional to the delocalization,
or the de Broglie wavelength, 〈Q〉 ≈ 1/λ2 ≈ T . τm is
shown for the three clusters in Figure 6 and the curves
clearly show that the smaller clusters must increase the
amount of kinetic energy at a greater rate with temper-
ature. Essentially the different rates of increase for τm

are due to the larger clusters increased ability to store
energy in the pair-potential. This explains the marked
decrease in the temperatures of phase transitions as the
size of the clusters drops.

CONCLUSIONS

In this work, we have investigated the ground vibra-
tional state energies at zero temperature and the low tem-
perature thermodynamics of mesoscopic rare gas clusters.
The method used is a novel approach we developed previ-
ously based upon an “orbital” free density functional the-
ory. It also utilizes the Bohm hydrodynamical descrip-
tion of quantum mechanics similar to time dependent
density functional theory, and an information theoreti-
cal approach is used to determine an optimal quantum
density function. Improvements in the algorithm allowed
the calculation of the ground state structure at zero tem-
perature approaching the size necessary to simulate bulk
systems.

We have also outlined the theoretical development nec-
essary for the calculation of the ground state vibrational
energy at low temperatures. This involves the intro-
duction of an “entropic” potential which resembles the
von Nuemann definition of the entropy. This approach
was tested by measuring the thermodynamic behavior
for temperatures spanning the quasi-phase transition of
atomic clusters under 40 atoms. Results indicate excel-
lent agreement with previous studies. Good agreement

is also seen with the analytical results from the Debye
model which is surprisingly accurate even far from the
bulk or continuum limit.

The zero temperature results indicate that the level of
theory used in the calculation of quantum effects can in-
fluence the ground state structures that are calculated.
This could have major implications for some global opti-
mization methods. We also presented a virial-like param-
eter to help illustrate the melting characteristics of these
clusters. This melting parameter shows that the reason
for the significantly lower temperatures for phase tran-
sitions in microscopic and mesoscopic clusters is their
decreased ability to store energy in the the total pair-
potential energy. The most striking aspect of the present
results is the negative heat capacity seen for Ne13. This
has only been predicted or observed for so called magic
number clusters which implies that it is symmetry re-
lated. Additionally, it is has only been predicted using
quantum or semiclassical methods which implies that it is
quantum mechanical in nature. It would be interesting
to verify this for Ne55, the next magic number cluster.
In this work we have shown that our approach is useful
for accurately predicting ground state energies and ther-
modynamics for mesoscopic size systems influenced by
quantum delocalization.
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FIG. 4: Plots of the quantum, total potential, and entropic
contributions to the total free energy vs. temperature for
Ne13.

temperature subsequently cools down[31]. Schmidt et al.
[30] explain this for small atomic systems as a purely
microscopic phenomenon. That is, for larger systems at
a phase transition, energy is added as potential energy
rather than kinetic energy so that the temperature re-
mains constant over the course of the transition. For
mesoscopic scale atomic systems, on the other hand, it
can be entropically favorable to avoid a partially melted
state so that some energy is actually transfered from ki-
netic to potential energy causing a negative heat capacity
near phase transitions. Since this is not observed in clas-
sical simulations nor in the Debye model, it is possibly
due to anharmonic quantum delocalization effects in the
system. Another factor is that N = 13 and 147 clus-
ters form complete icosohedral structures in their lowest
energy state. These are called magic number clusters be-
cause of the stability of these highly symmetric forms.
Since negative heat capacities have only been observed
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FIG. 5: Internal energy comparison of the current results (· ·
! · ·) with the Debye model (−).

and/or predicted for magic number clusters, this sug-
gests that the negative heat capacity may be related to
the symmetry of the system.

In all instances of negative heat capacity the common
factor is that the energy is not an extensive quantity and
the interactions between subsystems must be taken into
account. In the clusters we are examining the tempera-
ture is raised but the atoms adjust themselves to store
energy in the pair-potential interaction between atoms
rather than increase the kinetic energy. Although this
explanation offered by Schmidt et. al.[30] appears to in-
dicate that this is a purely classical effect. To our knowl-
edge, no classical molecular dynamic methods have pre-
dicted negative heat capacities. Hence, we attribute the
negative heat capacity to purely quantum mechanical ef-
fects in this system.

Based upon the above discussions we can say the ther-
modynamics of these clusters is influenced greatly by
their relative ability to store energy preferentially in the
potential energy. This aspect of these systems can be
studied by introducing a virial like parameter consisting
of the ratio of the quantum potential with the total in-
ternal energy, 〈Q〉/〈U〉. This parameter essentially mea-
sures the percentage of energy contained in the kinetic
energy. This will be given by,

τm = − 〈Q〉
〈Q〉 + 〈V 〉 .

τm should approach 1 as the temperature is raised since
the averaged quantum potential value is increasing with

• Numerical/Systematic Error?:  
Cp<0 reported  by D. Wales  on the Ne13 
cluster...not by Mandelshtam (filter diagonalization 
methods)

• Physical Grounds:  Cp<0 has been reported 
for Na147 clusters and possibly neutron stars, 
certain types of blackholes, etc..
     Schmidt, et al Phys.Rev Lett. 86, 1191 (2001).

 Can show Cp<0 analytically for centrosymmetric 
potentials
    Review: D. Lynden-Bell Physica A 263, 293 
(1999)
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FIG. 6: (〈Q〉/〈U〉) vs. T. (Key: —: 13 atoms, · · ·:17 atoms,
− ·− : 37 atoms) .

temperature and the averaged potential interaction en-
ergy should remain about constant, although the cluster
will dissociate into a disordered state long before this
point is reached. The averaged quantum potential value
is a monotonically increasing function of the temperature
because it is inversely proportional to the delocalization,
or the de Broglie wavelength, 〈Q〉 ≈ 1/λ2 ≈ T . τm is
shown for the three clusters in Figure 6 and the curves
clearly show that the smaller clusters must increase the
amount of kinetic energy at a greater rate with temper-
ature. Essentially the different rates of increase for τm

are due to the larger clusters increased ability to store
energy in the pair-potential. This explains the marked
decrease in the temperatures of phase transitions as the
size of the clusters drops.

CONCLUSIONS

In this work, we have investigated the ground vibra-
tional state energies at zero temperature and the low tem-
perature thermodynamics of mesoscopic rare gas clusters.
The method used is a novel approach we developed previ-
ously based upon an “orbital” free density functional the-
ory. It also utilizes the Bohm hydrodynamical descrip-
tion of quantum mechanics similar to time dependent
density functional theory, and an information theoreti-
cal approach is used to determine an optimal quantum
density function. Improvements in the algorithm allowed
the calculation of the ground state structure at zero tem-
perature approaching the size necessary to simulate bulk
systems.

We have also outlined the theoretical development nec-
essary for the calculation of the ground state vibrational
energy at low temperatures. This involves the intro-
duction of an “entropic” potential which resembles the
von Nuemann definition of the entropy. This approach
was tested by measuring the thermodynamic behavior
for temperatures spanning the quasi-phase transition of
atomic clusters under 40 atoms. Results indicate excel-
lent agreement with previous studies. Good agreement

is also seen with the analytical results from the Debye
model which is surprisingly accurate even far from the
bulk or continuum limit.

The zero temperature results indicate that the level of
theory used in the calculation of quantum effects can in-
fluence the ground state structures that are calculated.
This could have major implications for some global opti-
mization methods. We also presented a virial-like param-
eter to help illustrate the melting characteristics of these
clusters. This melting parameter shows that the reason
for the significantly lower temperatures for phase tran-
sitions in microscopic and mesoscopic clusters is their
decreased ability to store energy in the the total pair-
potential energy. The most striking aspect of the present
results is the negative heat capacity seen for Ne13. This
has only been predicted or observed for so called magic
number clusters which implies that it is symmetry re-
lated. Additionally, it is has only been predicted using
quantum or semiclassical methods which implies that it is
quantum mechanical in nature. It would be interesting
to verify this for Ne55, the next magic number cluster.
In this work we have shown that our approach is useful
for accurately predicting ground state energies and ther-
modynamics for mesoscopic size systems influenced by
quantum delocalization.
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Conclusions

• “Bohm-inspired” approach for including quantum effects into a many-body system.

• To date this is the ONLY application of the Bohm/Hydrodynamic approach in a 
non-trivial system. 

• Molecular dynamics “flavor” allows one to easily choose certain degrees of freedom 
to be described with varying degrees of “quantum” character. Much like path-
integral MC or path-integral centroid dynamics. 

• Finite temperature results:  structural predictions and thermodynamics for rare-gas 
clusters are at least consistent with more standard approaches.  

• Do not see “pre-melting” or “surface melting” (consistent w/Mandelshtam (PIMC)--
different from classical simulation)

• Not restricted to magic number or closed shell clusters.
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“Entopic force”
δS
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Gaussian trial density: 

OK at high and low temperature--error is small

Harmonic osc:
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other US University!
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